A Delay-Insensitive
Multiply-Accumulate Unit

Christian D. Nielsen
Alain J. Martin

Computer Science Department
California Institute of Technology

Caltech-CS5-TR-92-03

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
12 FEB 1992 2. REPORT TYPE 12-02-1992 to 12-02-1992
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

A Delay-Insensitive M ultiply-Accumulate Unit £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 21
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A Delay-Insensitive
Multiply-Accumulate Unit*

Christian D. Nielsen® and Alain J. Mariin

Department of Computer Science
California Institute of Technology
Pasadena, CA91125

February 12, 1992

1 Introduction

Due to advances in integration technology the use of asynchronous circuits has
become increasingly interesting. Design methods have emerged with which it is
manageable to design efficient and reliable asynchronous circuits.

Instead of designing circuits under worst case assumptions as for synchronous
circuits, the objective in asynchronous design is to attain the best possible
average performance and to utilize this potential performance advantage at the
architectural level.

We have designed a serial-parallel multiply-accumulate unit that exploits this
performance advantage. The unit is designed to be part of a large ring network
of units performing vector-matrix multiplications. As the system containg a
large number of these multiply-accumulate units, we choose the area-economic
serial-parallel approach. Further we want the design to take advantage of the
fact that a large percentage of the elements in the matrix are small integers,
with zero as a special case. The result is a flexible multiply-accumulator with
performance proportional to the bit length of the serial input multiplier.

The design has been implemented as a delay-insensitive circuit, i.e. the
functional correctness is independent of any delays in circuit elements as well
as wires — except for certain wire forks, called isochronic forks, for which we
assume that the difference in delays in the branches of the fork are negligible [4].
This kind of circuits constitutes a sub-class of the class of asynchronous circuits.

The paper describes the design and implementation of the multiply-accu-
mulate unit using the method and tools developed at Caltech [4] for design

*The research described in this report was sponsored by the Defense Advanced Research
Projects Agency, DARPA Order number 6202; and monitored by the Office of Naval Research
under contract number N00014-87-K-0745.

10n leave from Department of Computer Science, Technical University of Denmark.

of delay-insensitive circuits. With the use of the method, which consists of a
sequence of transformations to a circuit description, the designer goes through
the following steps:
Algorithm
4
CSP-specification
4

Handshake expansion

4

Production Rules

4
Layout

The transformations, which are performed at each level, are supported by
interactive design and analysis tools from the handshake expansion level down.

The purpose of this paper is twofold: To present a delay-insensitive serial-
parallel multiplier and to illustrate the full course of design from a high-level
description to fabrication on a non-trivial example.

The description of the method should be seen as an attempt to give the
reader insight in the design of a full scale delay-insensitive circuit from top to
bottom; it is not a complete presentation of the design method (for this we refer
to [4]}.

We hLave fabricated an eight-bit prototype of the multiply-accumulate unit
in 2p CMOS. Because of the delay-insensitivity the chip is very robust towards
variations in operating conditions. At room temperature and 5 volts the chip
has a cycle time of 27 nsec for a one bit serial-parallel muitiplication. The design
is scalable to wider word sizes without loss of performance,

2 Algorithm — CSP-specification

The algorithm is inspired by previous work on a digital artificial neural network
engine [6]. The architecture of this network is based on a systolic ring network
proposed by Kung and Hwang {2]. In this architecture the neural computations
are performed as consecutive vector-matrix multiplications, where the vector
represents the state of the neural network and each element in the maftrix repre-
sents the weight of a connection between two neuron processors. A zero weight
represents “no connection”.

So, the core of the neural computation is to perform a vector-matrix multi-

plication:

Py A A o A By

Py Ay Agg o Ay By
P=AxB or : = i . . A (1}

P Ani Anz - Ann B

This multiplication is performed by arranging a set of multiply-accumulate pro-
cessors in a ring network. To each processor is attached a local memory con-
taining one row of the matrix. The vector elements are distributed in the ring
— one for each processor — and circulated among the processors during opera-
tion. The task for each processor is to calculate one inner product of the result
vector, i.e. for processor ¢

N
Fi= AiB; (2)
j=1

We have chosen the serial-parallel approach for the implementation of this
compusation for the following reason: Assuming bit lengths, m and n, of the
multiplicand and the multiplier respectively, the size of the iterative multiplier
is O(m + n) in contrast to O{mn) for a combirational counterpart. This area
consideration becomes of interest already for bit lengths of ten to twenty. The
final system of neuron processors will consist of many hundreds of identical
processors in which the multiplier is a principal component. The size of the
multiplier does therefore greatly influence the size of the full system.

The summation in (2) is expanded to a serial-parallel implementation:

N n-—-1
Pr=Y" 2auB; | (3)
j=1k=0
—1 N
where A;; = Lo ?f‘a,-jkA

From this formula we can formulate a CSP-specification for processor ¢,
1<i<N:

PROCH] = (sum = 8, 7 :=1;
#* L <N — k=0,
*[k< n— sum:= sum—;‘—?kaijkBj;
k=k+1

1
Ji=5+1
5

P; = sum

Next, we decompose the processor specification into a process controlling the
loop indices, j and &, {called “ENVIEONMENT") and a process performing the
computation {called “MAFP"):

ENVIRONMENT =(P7P;; j =1,
*[<N — B'By;

k=0,
*[bh<n— ATaijk;
k=k+1
1;
jri=j 1
5
P7P;

)

MAP =*[[B — B7b
04— A%¢" sum = sum + a-bb; bb:= 2. bb
0 P ——+ Plsum;, sum =10
11

All internal variables in MAF excepl o are integers; ¢ represents a single bit
of the multiplier A. The initialization of sum to zerc is done by an initial
communication on channel £. It is noted that the multiplication with 2* in
MAP is performed by multiplying bb with 2 after each accumuiation.

As the two variables, sum and bb, occur 1n the expressions that are assigned
tc themselves, it is necessary to introduce extra variables to hold the values
during the assignment:

MAP = ([B — B7bb
0 A— A%¢, b = bb, acc := sum; sum = acc+a’ - b, bb =2
0 P — Plsum; sum =0

1]

This specification of MAP is now in a lorm, that can be implemented, but
first. we discuss a possible implementation of the environment.

The environment

Even though our focus is on the implementation of the multiply-accurnulate
unit it is necessary to consider how the process constituting the immediate
environment for the unit may be implemented. For simplicity we want to avoid
using counters to keep track of the loop indices. Furthermore the control of the
loop indices is local to each processor, whereas the values of the multiplicand,
B;, and the inner product, P, are send from and to the main ring of processors.

This suggests that the control of the accumulator be stored together with the
multiplier bits in the local memory.

With this scheme we are able to utilize variable bit length multipliers. The
multiplication may be interrupted and the next started when the remaining most
significant bits in the multiplier are all zero. In this way the actual computation
time for a multiplication is between zero {for multiplication with zerc) and »
cycles. For an even distribution of numbers the average time is n — 1. Tor
many applications in artificial neural networks, the distribution is not even,
but with a bias towards small numbers. Especially for a large class of neural
net configurations more than half of the numbers in the matrix will be zero.
It ts shown in [7] that an asynchronous implementation is well suited to take
advantage of these properties.

A possible description of the environment, where the control of the accu-
mulator and the communmcation of the multiplicands and nner products are
separated, is:

[MEM7w, Tw<! —Alw 0l w=8 —NB 1l w=3—R1]
|

*[RINGI?s: [BE— Bls | Q@ — Q7s]; RINGO!s]

[

[PPz e Qif(z) 1

From here, we concentrate on the implementation of MAP. We change the
specitfication of MAP to reflect that the control of and communication on the
B and P channels are separated:

MAP =+[[NB — NB e B7bb

0 A — A7d’, b = bb, acc = sum; sum = acc+ a’ - b, bb = 2 -6
0 R — RePlsum;, sum =10
11

The environment and accumulator with communication channeis are sketched in
Figure 1. Note that the construction of the first environment process guarantees
that the three guards in MAFP are mutually exclusive.

Carry-save versus ripple-carry adder

Before we decompose our specification, we should decide whether the multiplier
should be implemented with a carry-save or ripple-carry adder. The ripple carry
adder has become a popular example illustrating the benefits of asynchronous
circuits. This is due to the fact that with very simple hardware we obtain very
good average performance — logarithmic to the number of bits added [b]. This
is a very important property, when the resuit is needed immediately.

For this application, we do not need the result of each addition in binary
form, but only the final inner product. By using a carry-save adder we can do
an addition ir unit time. The carry part of the accumulated surn needs only to
be resclved once per vector-matrix multiplication.

Computation time

The cycle times associated with input of & new multiplicand, B;, multiplication
with an A-bit and output of result P are denoted {3, {4, and {,, respectively. The
multiplication time for an n bit multiplier is tyyi: n = s + nt,. Multiplication
with zero takes time tmun.0 = ts. The average multiplication time is {pn =
ty+ant,, where an denotes the average multiplier bit length for the application.
The average time used for the whole task of calculating the inner product is
tip = N(ty + anty) + (s — 1)ty + &, Here, s is the bit length of the inner
product; the term (s — 1)¢, is the time needed to flush the carry part iuto the
sum part of the inner product. This is done by repeatedly multiplication with
zero bits.

By considering the frequency with which each of the three guarded com-
mands will be activated during cperation 14 is possible to optimize the imple-
mentation. The NEB guard will be activated once per multiplication. During
each multiplication the 4 guard will be activated once for each bit in the mul-
tiplier. This corresponds to the inner loop of the ENVIRONMENT process
in section 2. Finally the R guard wiil only be activated once after each full
vector-matrix multiplication.

Even if most multipliers are small numbers, the 4 guard is the most fre-
quently activated guard. Hence, the performance of this guarded command
should be optimized as much as possible — if necessary at the expense of the
others.

Decomposition

The CSP-specification, MAP, is decomposed into processes handling single hit
variables only.

The implementation of MAP contains at least m + n — 1 processes, MA[]],
0 < I, each containing a full-adder:

MA[l]= *[[NB — NB e B7bb
0 A— A%a, b:=bt, Cl7c, COlcarry, aecc:= sum;
sum ;= SUM (a,b, ¢, ace), carry := CARRY (a, b, ¢, acc),
BI'thh, BOW
0 B — RePlsum; sum :=0

11

All variables in the specification are booleans. The value of 3; (with zeros

concatenated as most significant bits) is distributed with one bit to each process,
i.e. process M A[l] receives bj;. The processes further produce each one bit of
the accumulated surn, F;. The value of ay;3 is send to all processes in parallel.
The BO and €'O poris in each process is connected to the B and CJ ports of
the next more significant bit process.

(To accommodate accumulated sums larger than the minimum limit, the
multiply-accumulate processor is extended with an appropriate number of pro-
cesses. For the sake of regularity, these may be chosen identical to the first
m-+n—1, but they can be simplified to contain half-adders, as they are only ac-
cumuiating overflowing carries from the accumulation of products. The number
of necessary additional processes depends on the application.)

For reascns of efficiency we want to move the communication of the B-bits to
happen in parallel with the other communications in the A-guarded command.
This will improve the performance as the unit will perform one communication
step followed by an internal step, instead of two communication steps. To make
this possible, it is necessary to send the value of By shifted one bit to the left,
i.e. process MA[l] receives b;141y, see Figure 2. Process MA[l] becomes:

MA[l| = *[[L NB — NBe B7bb
04— A%e, BI?7b, BOWE, CI7¢c, CQlearry, ace:= sum;
sum = SUM (a,b,¢,ace), carry := CARRY (a,b, ¢, acc),
bh = b
I R — RePlsum;, sum =

1]

The two ends of the string of processes need to be closed appropriately. In
the accumulate cycle (A becomes true) process MA[{] starts out by reading in
aband ac from MA[l — 1) and sending a b6 and a carry to MA[l+ I]. Process
MA[0] communicates with process MA[-I]:

MA[—1]=+[[NB — NBeB7bb
0 A—— A, BOWb COWO; bb =0
I R—R
1]

The process handling the most significant bits, MA{M], M > m+n — 1 is:

MA[M]=*[[NB — NB
0 A— A, BI?, CI%?c, acc.= sum;
sum = FXOR(c, acc)
1 BR-— RePlsum; sum = {

11

In the following, we will concentrate on the intermediate processes only.

3 CSP - Handshake expansion

The implementation of the given specification into production rules can follow
one of the two strategies.

s The full handshake expansion is derived directly from the specification
including communication actions as well as assignments. Unfortunately
the handshake expansion may become very extensive if the combinational
expressions are complicated.

e The assignments and message communications are decomposed into sepa-
rate processes, the data path, which are treated separately. The handshake
expansion is then derived from a CSP deseription including communica-
tion actions only; the control part. This yields the possibibity to cptimize
each of the parts separately {3].

Because of the complexity of the boolean expressions for the SUM and

CARRY functions, the second strategy is used.
In the following we derive a handshake expansion for MA[{] through the

following steps:
1. Separation of the data path from the control part.

2. Replacement of each communication action with its implementation as
elementary actions on the two boolean signals that constitute the channel.

3. Reshuffling of actions to optimize performance.

The final transformations of the handshake expansions before implementation
as production rules will be treated in the following section.

Decomposition of data path

From the CSP specification, we derive a specification of the control part by the
following steps:

¢ All message passing is removed from the communication actions.

o All assignments are removed and put into separate processes, leaving each
assignment as a simple communication action in the specification, ie.
«[..;z=y;..) becomes =[.. ;D] *[[D — 7 = y; D]

o All communication ports are assigned to be active or passive. We have
used the approach that probed ports and output ports are passive and
ports corresponding to assignments and input ports (which are not probed)
are (lazy) active. The choices are indicated with indices “P” or “A”.

After these steps we gel (The active end of the channels are indicated with
dots.):

MA[l] = *[[NB — NBp e B,
Ez—'ﬂp, BIA, BOP, CJrA, COP, TA; SA, CA, BBA
I R— RpePp; Za
11

The communication actions T', S, ¢, and B call the data path processes:

*[[T — acc := sum; Tpll |l

#[[§ — sum = SUM{a, b, c,acc); Spll Ii
*[[C «— carry == CARRY (a, b, ¢, acc); Cpl] 1l
«{[BB — bb:=b; BBEp1] ||

*[[7 — sum = 0; Zp]]

Implementation of communication actions

Each communication action is replaced with its implementation as elementary
actions on two boolean signals, that constitutes the channel, e.g. z; and z, for
communication X. We chose from the three four-phase implementations:

Active: z,7; 2] 2ol [Hail;
Lazy active: [-z];z,1; {2:] 2615
Passive: EREARREIETIE

This step yields the full handshake expansion:

MA[=
[[nbz’“‘‘t_'ﬁi:ll 5o'f,flbo?; [_'nbi/\bi]; bolanbol
0 a; — (a,T; [mad: aol), ([bedy da.T; Lbi:]; be,l),
([-cigdy ctoly Ceigdy etol), (C=45 t.1; [L1; 11,
([bo;1; booT; [=boid; bool), ([eeid; cool; [=coid; coolks
([=s:d; sols [sid; sol), ([oeds coly Led; eol),
([=6b1; bb,T; Lbd;]; bé,1)
0 ri—— [pid; pol,rol; Do Ampids polirols [m2idy 2005 (i) 20l
11

Reshuflling of communication actions

Reshuffling is the process of reorganizing a sequence of actions in a handshake
expansion without changing the functionality of the sequence. Reshuffiing is
primarily applied for performance reascns but it may also add to the simplicity

of the hardware. The transformation is essential to the sequencing of events in
different processes and does as such influence the performance of the implemen-
tation the most. It is performed by the designer, but approximate performance
figures may easily be extracted by a cycle analysis tool for comparisons [1}.

The & B- and R-guarded commands are not reshuffled. The first is as sumple
as it can pe. For the R-guarded command ore might be tempted to postpone
the actions, .| and r,] to happen in parallel with z,], but this will change the
functionality of the specification: The value of sum (from the CSP-specification)
would be reset while it is send to the environment.

In each step of the A guarded command the communication actions are
gpecified to happen in parallel, independent of each other. Through analysis of
the behavior of several interconnected processes the natural overlapping of the
communication zctions may he established. It is appreciated that the complexity
of the circuit will decrease and the performance increase if it is implemented to
perform this natural order of communication actions only. This means that we
implement a stronger specification than the parallel operator. Care should be
taken that deadlocks are not introduced as communications to the left and the
right neighbors overlap.

[oay — [bis A—ct Aty BigT e T, 101, a0T; Lhos A coy3; baoT, cooT;
Dbt A cis Aty A biol, cigl 1ol a0]; [=bo; Amcoid; boyl, cosl;
[-sg A e A b5 501, col, bboT; Do A e A BB 5ol col, bbol]

Further simplification is achieved by collecting signals which change with the
same dependencies in one signal. We collect the signals for Bl 4, CI4 and T4
inl4; BOp and COp in Op; and S4, Ca, and BB, in X 4. These collections
will be implemented in the section about production rules.

The handshake expansion for the A-gurarded command is now:

[ﬁli—’tﬁig‘]; ?'oT,ﬂoT; Eoi]; GOT; [éi/\jai]: iol:ﬂois [_‘Oij; Ool';
(mzid; ol f24]; 250]

4 Handshake expansion — production rule set

Before the handshake expansion is ready to be implemented as a production rule
set we need to perform a couple of transformations; slale assignment to ensure
correct sequencing and guerd strengthening to ensure non-overlap of guarded
commands. These steps are supported by interactive tools,

The production rule set can be implemented directly after these steps.

10

State assignment

When we implement the handshake expansion as a production ruje set we give
up the notion of sequencing using the “” operator. The sequencing of the pro-
duction rules needs ta be specified explicitly using variables from the handshake
expansion only. Therefore, il is necessary that all states in the handshake ex-
pansion can be distinguished from each other. If this is not already the case,
specific state variables must be inserted.

The problem arises in both the A- and R-guarded commands. The initial
state cannct be distinguished from neither the point afler ¢,] nor the point
after p,], 7,0, so a state variable should be inserted in each of the two guarded
commands. Several heuristics exists for the placernent and the performance
analysis tools gives guidance to an optimal placement. Generally an optimal
place to change a state variable is just before a wait for an input signal transition,
but several iterations may be (and was) necessary, as implementation issues at
lower levels may play a role.

Guard strengthening

Finally it is necessary to ensure that the three guarded commands cannot over-
lap. This may he achieved either by strengthening the guards to ensure that
the other commands are finished, or by utilizing that communications on N5,
A, and R are mutually exclusive.

We do not wani to strengthen the A-guard as it will decrease its perfor-
mance. Instead we make sure the N B and R channels are “held” as long as
their corresponding operations are performed. We “hold” the N B and R chan-
nels by making the completion of the communications be the last action in the
guarded commands. This is true for the N B communication, but it is necessary
to move the completion of the R communication to happen sinultaneous with
the Z action instead of the P communication.

A similar arrangement for the 4 channel will cause a performance reduction
as it will leave less time for the environment to fetch the next bit. Instead we
strengthen the other guards to wait for the A-gnarded command to finish.

The handshake expansion of M A[l] with necessary state variables and guard
strengthenings is:

L0,m4n—1]
MA[= *L0 nb; A —w A sy — [0bids BT, nboTy [ombs AbD5 bol,nbol
0 a — [~id; t01, 80T, Logl; o0ol; wl;
Lic A mag Al dol, a0l [0l ool
[-z:]; 20T, ul; [z A-uls sol
b ori AmuAns, — [pds pols vls [od; rols [opeds pols
[-z;]: 2,15 wl; [oriAz Aol zel, rol
11

11

Production rule generation

The generation of production rules from the final handshake expansion is straight-
forward. For each signal transition it is examined, which variables uniquely
determines a precondition for the transition. The state assignment deseribed
earlier guaranties that this is possible. We get the production rule set for the
control circuitry:

Choice N B:
why A A mE, A=b; — BT, nb,d
—nb; A b; — byl nb]
Chotce A:
a; A i Au Aoz, io], tol
2-0 Aeg - 00'[
04 —]
—a; At Au Ry
i A Ty — 0,
0o Au AL — 2]
Z, —
AL — 2.l
Cholce I
Pi AT AU A T, AP — Pol
Po — vl
v — ol
To APy - Pel
P AU A Tz — iz,
2o — oyl
=1y AU A 24 — Z,)
-y Az, — Tal

5 Production rule set — layout

The production rule set needs to go through a series of transformations before
it is ready to be implemented in layout.

Bubble reshuffling

For a production rule to he impiemented 1n CMOS we need to impose some
restrictions on the polarity of the signals in a production rle:

e All variables ih the guard of an up transition must appear in inverted
form, e.g. ~z — y|.

12

o All variables in the guard of a down transition must appear in true form,
e.g. T — yl.

"These restrictions arise from electrical properties of the p- and n-transistors in
the CMOS technology.

It is necessary to go through each set of production rules and change the
polarity of variables in crder to make them meet the criteria. This process, called
bubble reshuffling, must take into account that internal signals may contain
isochronic forks, i.e. forks where the difference in the delays of the branches are
assumed be negligible. 1t is not allowed to invert only one branch of these forks.
Production rule sets occur which cannot be resolved in this manner, because of
a cyclic dependency betwaen the variables. In these cases i is necessary to go
back to the handshake expansion and reshuffle the troublesome events.

The whole procedure of bubble reshutlling is automated with performance
analysis. In the cases of cyclic dependencies the particular variables are pointed
out.

Transistor sizing

Transistors are sized in order to increase performance. We concentrate primarily
on the sizing of the production rules for the A-gnarded command. Further we
keep the load frem the other guarded commands on the shared signals, z, and
», small.

(Given bounds on smallest, average and largest transistor width the transistor
sizing is performed automatically to repeatedly optimize the critical cycle of
events in the circuit [1].

Layout

Layout is automatically preduced from the final sized production rule set. The
up and down transitions of each variable are collected in a cell. If the cell is
not combinaticnal a “staticizer”(a weak feedback loop) is added to the output.
The cells are automaticly placed and routed, see Figure 3. The total transistor
count for the control part is 129,

6 Data Path

The production rules and transistor network for the combinational expressions
and the communication ports have been designed by hand. We have used the
standard communication ports as they have been derived in {3]. All bit variables
are represented in dual rail. At an input port the dual rail variable is input into
a register, which content is stable at the time of use. This requires that the
register acknowledges when the variable has been input, Figure 4:

zl — zl] zf wr ozl
—zefl — ozl gl — zf]

20 — zl| (feedback to staticize signal)
z1 — x0| (feedback 1o staticize signal)

~at A =zf ~ ack]
{zt AzlyVizf Az8) — ackl

In the design of the combinational expressions it is appreciated that this register
contains both the true and inverted vahie as stable signals. For the simple output
ports we have the production rules, Figure &

zl Ago — El 0 Ago — ﬁi
g0 — ytT —go . yf[
-yf — yil (staticizer)

-yl yfl (staticizer)

in the cases where combinational expressions are involved these has been
designed by hand and incorporated in the cutput ports. The pull-down part of
the production rule set for the S A function is:

((acci Acl A{al0 VOV (accd A ct A(al Vv bO))YV
(acet Act A{al ANBI))V (accd Acl A{al AbL)))Ago — sumi]

((acclO A cO A{al v b0}V (acct Al A{al V BO))V
(accO el A{adl ABIVYV (accl AcOA(al ABE)))Age — sumf|

These two expressions are manipulated and by transistor sharing the transistor
count is brought down to 14 transistors for the two expressions (Figure 6).
The pull-down part of the production rules for CARRY are:

((accl Acl)V ({cl Vaccl)A{al ABIY))Ago — carryt]
((accd A c0)V ((cOV accO) A {(al V bBO)))Ago — carryf]

Layout

The data path consists of seven registers and seven ocutput ports (including
those for assignments). The 218 transistors are laid out by hand, Figure 7.

7 Merge of control part and data path
We Lave implemented a prototype chip consisting of seven full adder cells plus

the two end cells. In this design we decided to decompose the accumulation
into single bit processors (section 2), which means that each bit process consists

14

of a control part and a data path. The control signals (N B, 4 and R) are
distributed through a short tree structured fifo-queve. This structure ensures
that the performance is independent of the length of the accumulator. For
other implementations alternative trade-offs may be constdered, for example
one control unit for every four bits or only one for the whole accumulator. The
drawback of the last solution is that the control signals has to be distributed to
the whole array, the computation performed and the acknowledgement signals
collected within the same cycle. This does not scale well.

8 Ewvaluation

An eight bit (4x4bit) multiply-accurmulate unit has been fabricated as a proto-
type in 2 CMOS (MOSIS TinyChip service). The core of the chip measures
1830x1800um and contains 3124 transistors. Each multiplier process consists of
347 transistors; 129 in the control part and 218 in the data path.

The chip is very robusi towards variations in operating conditions. It has
been tested successfully in the voltage range from helow 0.8 volt Lo above 10 volts
with repeated multiplication performance ranging from below 100 Kbit/sec to
above 58 Mbit/sec. It should be noted that the accumulator is self-adjusting to
these variations in operation conditions; it operates as fast as it can under the
given conditions.

The performance at room temperature and 5 volts is:

Multiplication with multiplier bit: i, = 27 nsec. = 37 Mbit/sec.
Input of new multiplicand: 1y = 37 nsec.
Output of result: tp = 30 nsec.

The implemented design is scalable to wider word sizes without loss of perfor-
mance.

The accumulator operates with variable bit length of the multipler with
a performance for a multiply-accumulate operation in the range of 37 nsec to
n-27 nsec., where n is the maximum size of the multiplier bit string.

Acknowledgements

Our work with the serial-parallel multiplier originates from previous and engoing
work done in the VLSI group at the Technical University of Denmark.

We are indebted to Drafen Borkovié, Steve Burns, Marcel van der Goot,
Pieter Hazewindus, Tony Lee and José Tierno, for patient guidance through the
use of the tools and for their inspiring comments.

15

References

[1]

[5]

[6}

Steven M. Burns. Performance Analysis and Optimization of Asynchronous
Circuits, Ph.D.-thesis, Caltech, 1991.

S.Y. Kung and J.N. Hwang. Parallel architectures for artificial neural nets.
In IEEE International Conference on Neuwral Networks, volume 2, pages
165172, 1988,

Alain J. Martin. Programming in VLSI: From Communicating Processes
to Delay-Insensitive Circuits. In C.A.R. Hoare, editor, UT Year of Pro-
gramming Institute on Concurrent Pregramming, Addison-Wesley, 1989.

Alain J. Martin. Synthesis of Asynchronous VLSI Circuits,
In Jorgen Staunstrup, editor, Formal Methods for VLSI Design, North-
Holland/Elsevier, 1990, pages 237-283.

Alain J. Martin. Asynchronous Datapaths and the Design of an Asyn-
chronous Adder. To appear in Formal Methods mn Sysiem Design, Vol 1,
nr. 1, Kluwer Academic Publishers, 1992,

Christian D. Nielsen, Jergen Staunstrup, and Simon Jones. A delay-
insensitive neural network engine. In Will R. Moore, editor, Proceedings of
the Workshop on VLSI for Neurel Nelworks, September 1860

Christian D. Nielsen, Jorgen Staunstrup, and Simon Jones. Potential Per-
formance Advantages of Delay Insensitivity. [FIP Workshop on Silicon
Architectures for Neural Nets, September 19940,

16

RINGI

RINGO

MAP

[
MEM
(I

fe————————

Figure 1: MAP with environment processes and communication channels.

1"y
!.{-2 Ili-{-\ji

BO
— MA[1]

BI- Bo
CI|: oo

[S O i+
By Py By B
o I Y |
BiIl- BO sl
MA of oo MAL = 1] o F—
| ZS—

T

sl

Figure 2: MA[l} with connecting channels

Tt

1

e

1L

T

Nl] =

Toert] || Hehemgy

bt (| g

== - =

== LaSREARELS ol sl o IBE s s e A T

Figure 3: Layout for the control part.

18

zl

zi)

1 ack

L S Y

11

et I sirong i {_
zf I rstrong
]

Figure 4: Transistor diagram for the standard register with acknowledgement

ol

{>¢,yi.

rzl —1

Do yf

' L L
e

20—

Figure 5: Transistor diagram for the standard output port

19

sumf

¢

go
accl —{ accl —{ accl —| accl “I

N

o oL

Eﬁﬁ

Figure 7: Layout for the datapath.

20

